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Ionisation waves in solids 
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Department of Physics, University of Essex, Colchester CO4 3SQ, UK 

Received 15 August 1989, in final form 15 November 1989 

Abstract. It is shown that ionisation waves, familiar in connection with the positive column 
of a gaseous plasma, can occur in solids. This is demonstrated with a simple model in which 
a single type of carrier (electrons) impact ionise a deep-level trap in an insulator. Impact 
ionisation is described by lucky-drift theory taking into account the non-local nature of the 
process. An analytic theory is presented for linear waves and conditions for the existence 
and stability of ionisation waves are derived. It is shown that stationary, forward-travelling 
and backward-travelling waves are all possible, and they occur as a consequence of the non- 
local nature of the impact ionisation process. It is also shown that the presence of stationary 
waves in a finite lengthof sample leads to a current-controlled negative differential resistance 
(NDR). The end point of the growth of stationary waves in time is shown to be saw tooth 
waves of unchanged wavelength with an amplitude determined by the occupation of the trap 
at electrical neutrality; being zero for completely full or completely empty traps and being a 
maximum when the traps are half filled. The theory is applicable to semiconductors as well 
as insulators. 

1. Introduction 

Ionisation waves in the positive column of a weakly ionised plasma have been known 
for many years. An exhaustive experimental study was made by Stewart (1956) and 
there has been much theory (see, for example, Von Engel (1965) and more recently 
Grabec (1974)). Recently, ionisation waves were discovered in a numerical simulation 
of hot-electron transport in ZnS (Ridley and El-Ela 1989) and were seen to arise as a 
consequence of the non-local nature of the impact ionisation process. As far as the 
author is aware this was the first intimation that ionisation waves could exist in solids. 
Because this demonstration by Ridley and El-Ela was numerical it was not clear what 
the general conditions for the existence of such waves were. This paper is an attempt to 
illuminate the properties further by presenting a linear theory of ionisation waves. 

Since the basic physics of these waves resides in the non-local nature of ionisation 
we outline in section 2 an approach based on lucky-drift theory (Ridley 1983,1987, Burt 
1985), in which the central concept of the ionisation length, L ,  is introduced. Section 3 
contains the linear theory of ionisation waves with the assumption that the ionisation 
rate at a point x depends upon the average field over the distance between x - L and x, 
and the carrier density at x - L. In this way we introduce the non-local element. In 
section 4 the general dispersion relations of linear theory are solved for stationary waves 
in an insulator, and it is shown that stationary waves exist only for a specific set of 
wavelengths. For other wavelengths the waves are propagating, either forwards (in the 
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Figure 1. Collisionless electron trajectories. 

direction of electron drift) or backwards, and we deal with these in section 5. Whether 
propagating or stationary, the waves share the same expression for the growth constant. 
One interesting property of stationary waves in a finite sample is that they can give rise 
to a current-controlled negative differential resistance (NDR). Limitations to growth 
imposed by trap occupancy are shown in section 6 to lead to saw-tooth waves. 

2. Lucky-drift theory of impact ionisation 

The simplest picture of impact ionisation is of an electron which is accelerated by the 
prevailing electric field to the point when its energy equals the ionisation energy EI and 
impact ionisation takes place (figure 1). If the electron starts with zero energy and the 
field is 8 the distance travelled, Lo, is simply 

Lo = EI/e%. (1) 
After ionisation the electron has substantially zero energy and so has the impacted 
electron. A second bout of acceleration over a distance L results in a second plane of 
ionisation, and so on. Thus impact ionisation has the intrinsic property of appearing as 
a wave pattern in space with the characteristic wavelength given by Lo. 

There are several factors which blur such ionisation waves. 

(i) Spread in the starting positions. In the limit of a uniform distribution of electrons 
in space, waves as conceived above disappear utterly. 

(ii) Soft threshold. When the electron energy reaches EI the probability per unit 
distance of ionising becomes finite but usually less than unity. On average the electron 
will travel a further distance A L  before ionising, but there will be statistical fluctuations 
which will blur the ionisation plane. 

(iii) Elastic collisions. In many systems the chance of the electron avoiding a collision 
is negligible. Collisions do two things: they randomise momentum and, if inelastic, they 
remove energy from the electron. Randomising momentum means that the electron can 
find itself sometimes travelling against the field. When the collisions are frequent the 
average velocity of the electron changes from being ballistic to being determined by 
drift. Provided the collisions are elastic the characteristic length is unchanged since this 
determines the potential difference required for ionisation, so spatial oscillations are 
still expected. Thus scattering is not important, provided only that the collisions are 
elastic. 

(iv) Inelastic collisions (see figure 2). In order to reach the ionisation threshold in 
the distance L the electron must avoid an energy losing collision. Following lucky-drift 
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Figure 2. Electron trajectories in the presence of energy-relaxing collisions and a soft 
threshold. 

theory we artificially separate collisions into two distinct categories, those which only 
relax momentum and those which only relax energy. If the latter occur with a charac- 
teristic time constant tE the probability of avoiding a collision in time tis  

If, as is usual, momentum relaxation is much more rapid than energy relaxation then dt 
can be replaced by dx/vh where U; is the lucky-drift velocity, whence 

where LE = u 2 t E  is regarded as energy (and hence spatially) independent. Thus the 
ionisation coefficient (probability per unit length) is 

a = ( I / L ~ )  e-Lo/LE. (4) 
Impact ionisation now occurs at a rate determined by a drifting electron which is lucky 
enough to avoid an energy-relaxing collision. In solids where energy relaxation is 
principally via the emission of high-frequency phonons L E  is indeed independent of 
energy for a parabolic energy band structure, and is simply proportional to the electric 
field (Ridley 1983), namely 

a = (e%/&) e~p[-2r (E~/e%i l )~]  (5b) 

where r = ho/[2n(o) + l ]EI ,  hw = phonon energy, n(w)  = Bose-Einstein factor, and 
A is the mean-free path for collisions. Lucky-drift theory can be elaborated by taking 
into account ballistic contributions, contributions from the background hot-electron gas 
(initial electron energy greater than zero), and including a soft threshold (Ridley 1983, 
1987). It has been shown to agree extremely well with numerical solutions based on 
transport theory and a Monte Carlo simulation. Thus, in all situations where motion is 
dominated by collisions, impact ionisation arises from a lucky drifting electron. (Note 
that estimates of the impact ionisation rate based on a Maxwell-Boltzmann distribution 
or a phonon-induced Gaussian distribution are known to be in error. While these 
distributions correctly account for average quantities they cannot account properly for 
improbable events such as the lucky-drift electron.) 
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Let us look at the effect of these factors on simple ionisation waves more quanti- 
tatively. A uniform spread of electrons to begin with is at first sight bad for waves, but 
we shall return to this problem later to ask how stable a uniform state is. The other 
factors introduce characteristic lengths which must be compared with Lo. 

Impact ionisation rates near threshold can be expressed as follows: 

wherep is the soft-threshold factor, tE is the energy relaxation time, and s = 2 for band- 
to-band impact ionisation (Keldysh 1960) and s = 1 for impurity ionisation (Ridley and 
El-Ela 1989, Woods 1987). The soft-threshold factor in well-investigated semi- 
conductors is about unity for the band-to-band process (Ridley 1987). For an impurity, 
p will be proportional to the density of trapped electrons, Since p = 1 for the band-to- 
band process where the effective density of ionisable electrons at the top of the valence 
band is about lo2' cm-3 in semiconductors we can estimate that for impurities p 2: 
nT/1OZ1, where nT is the density of ionisable electrons in units of ~ m - ~ .  (This turns out 
to be equivalent of assuming an ionisation cross-section of order 10-16cm-*.) 

In all cases, except those where the field is very high, the overshoot in energy is 
determined by the energy relaxation rate rather than the impact ionisation rate. The 
length of prime importance here is LE, which is proportional to the field, and the effective 
length which the electron has to travel becomes 

L = Lo + LE (7) 
with an uncertainty also of order LE. Thus the softness of the threshold pushes up the 
effective magnitude of the threshold energy and demands that the electron travel on 
average an energy relaxation length further. Ionisation planes are well-defined provided 
LE 

When nearly all the collisions are inelastic, which is the relastic case, lucky-drift 
theory points out that impact ionisation is effected principally by these lucky electrons 
which collide very infrequently, though they usually collide at least once (and hence 
more in the drift mode rather than in the ballistic mode). Usually the collisions are with 
high-frequency phonons, each collision resulting in a loss of energy of, on average, hw/ 
[2n(w) + 11 where hw is the phonon energy. Thus if the average loss of energy per 
collision is small compared with the threshold energy for ionisation the extra distance 
on electron drifts to make up for energy losses will also be small compared with Lo. In 
other words we do not expect the existence of weakly inelastic collisions to affect the 
possibility of ionisation waves materially. 

We conclude from all of this that although sharp ionisation planes cannot occur in 
the real circumstance of solid state impact ionisation, a more diffuse ionisation wave is 
to be expected when there exists a well-defined starting point for acceleration. In the 
uniform case, where every point is a starting point, no waves appear to be possible. An 
analysis of the stability of the uniform case, however, shows that waves do occur, and 
to this analysis we now turn. The basic requirement is simply that impact ionisation is a 
non-local effect. 

Lo, which will be true at low fields. 

3. Linear theory of ionisation waves in a solid 

We consider the case of a semiconductor or insulator containing a population of a single 
impurity which gives rise to a localised level in the forbidden gap. We neglect thermal 
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processes and take into account only capture and impact ionisation processes involving 
electrons. We shall build into our theory from the start the basic attributes of the impact 
ionisation process as envisaged by lucky-drift theory, namely, that the rate at x is 
determined by ( a )  the electron density atx - L and (b)  the average electric field between 
x and x - L. The equation determining the rate of change of the trapped electron 
population is then, 

dnT/dt = c(NT - nT)n - eln’nT (8) 

where nT is the trapped electron concentration, NT is the total trap concentration, n and 
n’ are the electron concentrations in the conduction band at x and x - L respectively, c 
is the volume capture coefficient and ei is the volume impact ionisation coefficient 
dependent on the average electric field over the distancex - L tox. We will need Gauss’s 
equation: 

d8/dx = (e/E,)(n + nT - no - nw) (9) 

where 8 is the electric field (in the x-direction), E ,  is the static permittivity of the solid 
and the subscript zero denotes the concentrations for electrical neutrality, and we are 
limiting our attention to variations along the field direction. Finally we require the charge 
conservation equation, 

dp ld t  = -dj/dx (10) 

where p is the space charge density and j is the current density, given by 

j = e m d  - eD dn/dx (11) 

where u d  is the drift velocity and D is the diffusion coefficient. (Note that ud here refers 
to the entire free-electron population whereas in the previous section the primed symbol 
was used to refer to lucky drift. They should not be confused.) 

In the uniform steady state n = n’ = no, nT = nw, where 

nw = cN,/(e, + c). (12) 

Also, p = 0 and j = enoud. 

8 + Z 0  + 6 8 ,  n+ no + 6n etc, taking 
In order to examine the stability of this solution we perturb the quantities 

6% = ago e ( l h - 4  (13) 

etc. We need to look at the dependent quantities ud, D,  e,, c and n’. For simplicity we 
shall assume that diffusion and capture are not affected by field. Since momentum 
relaxation is rapid we can assume that 

6Ud = (14) 

where p is the differential mobility. The volume ionisation rate needs more care. First 
of all we observe the e, is related to an ionisation cross-section q via 

e, = u d q .  (15) 

Thus 
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6ei = o i6vd  + ud6oi  (16) 
and dud depends upon local field 6% whereas 6ai depends upon average field a%, where 

It is straightforward to show that 

6% = 6%[(sin kL/2)/(kL/2)] e-'kL/2. (18) 

6n' = 6n e-lkL. (19) 

Also we can write 

Substitution into the basic equations with the retention of linear terms only, leads to a 
dispersion relation which, after putting w + w - iv ( v  > 0 for stability), splits into real 
and imaginary parts: 

f l ( @ ,  k ,  = 0 f2(w, k, = 0 (20) 
where 

f l ( w , k , v ) = w 2  - ~ ( k ~ d + ~ , s i n k L ) - v ~ + v ( o ~ + w ,  + c o , + ~ ~ D - c o , c o s ~ L )  

- w,  ( U, + k2 D) - w,[ U,( 1 - coskl )  + UT] - w,  w,y[ (sinkL/2)/(kL/2)] 

x [cos kL/2 - (kD/ud) sin kL/2] (21) 
f 2 ( 0 , k ,  v)= V(kUd-2W 4- q s i n k l )  CO(++ W ,  0, + k2D-  W,COSkl) - O,kUd 

+w,w,(1 -sinkL) + w,oly[(sinkL/2)/(kL/2)] 

X [sin kL/2 + (kD/ud) cos kL/2]. (22) 
In these equations wI = udqnTO where a, is the ionisation cross-section, wT = udaT( NT - 
nT,) is the trapping frequency with a, the capture cross-section, w, = Vd(0, + oT)n is the 
generation frequency and U, = epn/&, is the conductivity frequency. The quantity y 
quantifies the rate by which the ionisation cross-section increases with field: 

Y = oe/(a, + 0T)  

a e  = ( l / o J  (dai/d&) e/&, 

(23) 

(24) 

where 

and it is worth noting that y is typically very large compared with unity. 

electric field are given by 
The relation between the disturbances of free and trapped electron densities and the 

iw - U, E, 
6n = - 68 

Ud - ikD e 

6nT = ik( &,/e) 6% - 6n. (26) 
Note that we have related volume rates to cross-sections via the drift velocity. This 

is entirely appropriate for the ionisation process since the ionisation rate depends upon 
the rate at which electrons drift in the field. For capture, however, the relevant quantity 
is the random thermal velocity, Vth. Because we do not consider explicitly any energy 
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(and therefore field) dependence of the capture process the replacement of thermal 
velocity by drift velocity once the dispersion relations are derived merely affects the 
definition of capture cross-section. This is done purely for simplicity so that a factor of 
Uth/vd need not be included. 

4. Stationary waves 

These relations give w and v as functions of k. They admit of many different solutions 
and it is necessary to focus on specific situations in which substantial simplifications can 
be made in order to obtain an insight. First of all, we are interested in non-oscillatory 
(stationary) ionisation waves, and so we can set w = 0. We shall also focus on the 
situation in insulators since these solids are closest to the case of a gaseous plasma in 
which ionisation waves are known to occur; consequently we take U, + 0. In wide-gap 
semiconductors and insulators the electric fields of interest are of the order of lo5 to 
lo7 V cm-', certainly high enough for drift velocities to reach saturation values of order 
lo7 cm s-l .  (Note that a weak dependence of velocity on field also suggests that taking 
w c 4  0 is a good approximation.) Furthermore, we expect that the wavevectors of 
interest will be of order 1 / L  or greater, with L of order cm or less. This means that 
the quantity kud, the drift frequency, will be of order 10l2 s-', which is large, and similarly 
k2D,  the diffusion frequency, will be large. 

Imposing the conditions w = 0, kud % wi sin k L ,  k2D % wT + w, + w, - wi cos k L ,  
leads to 

[ 
+ o i y  sin kL/2  ( 

k2 D kL/2  
v = k 2 D  or v = w ,  

and 
sin kL/2  kD 

v = w,  [ l  - - (sin kL/2  + -cos kL/2 
kVd kL/2  

The solution v = k2D cannot be a consistent one in general. The alternative solution 
can be consistent provided that 

kD 
sin kL/2  (sin kL/2  + - cos kL/2 sin kL/2 (cos kL/2  - - sin kL/2  = - 

k D  
k 2 D  ud ) kUd V d  

which reduces to 
[ 1  + (ko/Ud)2]  sin k L  = 0. (30) 

This may be satisfied for the spectrum given by 
k = s n / L  

where s = 0, 1 , 2  etc. Thus ionisation waves exist with this spectrum but they decay with 
a decay frequency given by 

s = 2 r + 1  

s = 2r 
(32) ) wiyL 2 

1 - -  
v = [  w n  ( ud ( 2 r +  1)2n2 

o n  

where r is an integer. The waves are unstable when 

Only waves with s equal to an odd integer need be considered since the others always 
decay. A discussion of this instability is deferred to the next section. 

(wiyL/ud) [2/(2r + 1)2n2] > 1. ( 3 3 )  
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We have shown that ionisation waves do exist in solids. The reason why they exist is 
closely bound up with the non-local nature of the ionisation process as quantified by L. 
Essentially they are waves caused by retarded action. Putting L = 0, which is equivalent 
to saying that impact ionisation is purely a local process, immediately rules out a stable 
or growing wave solution. The detailed character of the ionisation waves can be seen 
from the relation of the electron densities with the electric field, namely 

6nT = ik" 6% (34) 
e 
e 6n = 0 

In other words, the space charge responsible for the field oscillations resides solely in 
the traps. This accounts for the appearance of U,, the generation frequency, in the 
decay constant, since this determines the rate at which an excess population of trapped 
electrons decays. It is worth noting that trapped space charge of both signs can occur 
only if in the uniform state the trap is incompletely filled and not totally empty. Thus 
there is an implicit condition for the appearance of waves, namely 

Since the mobile electron population is not perturbed the non-local effect associated 
with n is not important-n can be taken to be a constant, determined by the current 
density, namely 

In insulators this will be determined by the field at the cathode which governs injection 
via, for example, Fowler-Nordheim tunnelling. 

It is interesting to note that the presence of stable ionisation waves gives rise to a 
current-controlled negative differential resistance (NDR) under some circumstances. We 
can see this by taking v = 0 and considering a real sinusoidal wave: (figure 3) 

The additional voltage generated across the sample of length W will be 

O < nT0 NT.  (35) 

j = enoud. (36) 

6% = 6g0 sin kx 6% = 0 , x  = 0. (37) 

0 
W 

6V = ,fo 6% dx  = - (1 - cos kW). 
k 

This will be added to the uniform state voltage Vo = % ,W. Now, given that the current 
increases monotonically with % o, an NDR will arise if 

that is 

Now since k = x/L (considering the fundamental only) and L = EI/e%o we can obtain 

d(V, + 6V)/d%, < 0 (39) 

ddV/d%o < -W. (40) 

Suppose W S L. The derivative is most negative when 

In this case 

and the condition for NDR becomes 

This, of course, violates our condition of linearity. Nevertheless, we can see from 

W/L = (2r + #). (42) 

dGV/d%o E - ( S % o / % o )  W. (43) 

S%O/%, > 1. (44) 
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Figure 3. Stationary ionisation waves and NDR. In the case of a specimen of length W ,  
increasing the applied voltage shortens the wavelength and increases the overall oscillatory 
voltage drop, and so the differential resistance is positive. In the case of a specimen of length 
W,  the overall oscillatory voltage drop decreases, leading to the possibility of NDR. 
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I 

I 1  ' Traps fu l l  'Empty '  

Figure 4. Dispersion relations (schematic). Figure 5. Saw-toothed ionisation wave. 

this imperfect example that in the case of stable non-linear waves there should exist 
conditions on the parameter W / L  under which NDR appears, a conjecture which is borne 
out in numerical computations (Ridley and El-Ela 1989). 

5. Propagating waves 

Let w now be finite, but much smaller than the drift frequency, and maintain the 
assumptions kud % wT + w, + 0, - wi cos kL and wc+ 0 .  Then it is straightforward to 
show that (figure 4): 

u n w i y  sin kL 
U=--- W e kVd 

kVd kL 

wiyL sin2 kL/2 )  
2Ud (kL/2)2  * 

v = w ,  1-- 

(45) 
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The decay constant is unchanged in form, and this solution encompasses the stationary 
solution. The waves are backward travelling (o < 0) for 

sin k L  > 0 (47) 

sin k L  < 0. (48) 

vg = vk(kL cot k L  - 2).  (49) 

and forward travelling for 

The group velocity ug is related to the phase velocity v k  as follows: 

We cannot rely on these solutions as k approaches zero since this would violate our 
initial assumptions. Nevertheless it is clear that the highest frequency modes are those 
with k L  < n, and these are backward travelling. They are also potentially the ones with 
maximum gain. If we can put k L  4 1, then 

W = -O,O,Y/kUd, (50) 
v = w,(l  - cO[YL/2Ud). (51) 

W,YL/2Ud > 1. (52) 

These waves have a positive group velocity and grow provided that 

Increasing k reduces the gain, following the [(sin kL/2)/(kL/2)I2 function. A fuller 
treatment of the long-wavelength regime will be presented in a future report. 

Another solution involving propagating waves can be found when o is large. In this 
case 

0 = kVd v = k 2 D .  (53) 
These are familiar as drifting space charge waves which dissipate through diffusion. 
These have nothing to do with ionisation, and we do not consider them further. 

We have shown that both propagating and stationary ionisation waves can exist in a 
solid. Propagating waves can exist in forward-travelling or backward-travelling forms. 
Backward waves, forward waves and stationary waves are commonly observed pheno- 
mena in weakly ionised plasmas. Here we have shown that they should also be observable 
in insulators. All these waves, however, are potentially unstable and it is of interest 
to consider the role of non-linearities in determining the end point or points of the 
instability. 

6. Non-linear stationary waves 

We shall not attempt a full discussion of the non-linear dynamics but merely point out 
the existence of large-amplitude stationary waves. If, as we have assumed, the free- 
electron density remains unperturbed and the conductivity frequency is negligible, the 
basic equations reduce to 

Since U, depends on the fields between x and x - L the equation is a difference- 
differential equation. A saw tooth model follows by taking ai % aT or U, < U,. Since in 



Ionisation waves in solids 295 1 

this approximation all the space charge resides in the trap there exist two extreme 
conditions which will be achieved by growth, namely, traps empty and traps full. In 
such a situation the waves become approximately saw toothed in shape with the field 
increasing roughly as (e/&,)(NT - nTo)x when the traps are full and decreasing roughly 
as -(e/&&$ when the traps are empty. Because of the sensitivity of the ionisation rate 
to field the demarcation between these states can be quite sharp. The ability of the traps 
to provide space charge is thus limited and this will inhibit further growth. 

A simple saw tooth model is thus (figure 5 ) :  

( 5 5 )  
x1 s x s x o  

x o s x < x 2  

% = % O  + (e/Es)(NT - nTO)(x - x1) 

= % O  + (e/E~)(NT - nTO>(xO - xl )  - (e/&s)nTO(x - x0). 

Fornonetspacecharge8 = gowhenx = xlandx = x 2 .  ThewavelengthAisthusxz - xl. 
The latter is determined by the condition that the average field is equal to the critical 
field for ionisation at the maximum ( x  = xo)  and minimum ( x  = x1 andx = x 2 ) .  The field 
rises towards its maximum in a region where trapping is dominant and the traps are full. 
At the maximum, ionisation dominates trapping, the traps empty and the field falls. At 
the minimum the average field drops below the ionisation field and trapping once more 
dominates. 

The average field is 

This turns out to be 

%(x)  - Ce, = [e(x - xo)/2&L][(NT - nTo)(xo - x + 2 ~ )  - nT(x - x o ) ]  (57) 
where %, is the critical average field for ionisation. The equation % ( x )  = gC = 0 has two 
solutions, namely, 

x = xo x = XO + 2L(1 - nT/N,) = x 2 .  ( 5 8 )  
Equating fields at x = x1 and x = x 2  leads to A = 2L. This means that the wavelength 
does not change in the non-linear regime when we assume the condition r* p d x = 0 .  (59) 

x1 

Knowing the wavelength, we can obtain the peak-to-trough amplitude which turns out 
to be 

Thus, the amplitude is zero for fully empty or completely full traps and is a maximum 
when the traps are half filled, namely 

max = (e/&s)(NT/2)L. (61) 
As an example, taking E ,  = F cm-', NT = 10l8 cm-3 and L = 600 %., gives AZmax = 
5 x 105Vcm-'. 

These spatial oscillations represent a kind of limit cycle in our non-linear system. It 
would be interesting to investigate its stability and the subsequent evolution of the 
system with increasing field and increasing electron density, and work on this is in 
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progress. Numerical work has already shown, for example, that NDR occurs under certain 
conditions for non-linear waves. 

7. Summary 

We have shown that hot electrons impact ionising and being captured by a set of traps 
in an insulator lead to the production of ionisation waves which can be forward travelling, 
stationary or backward travelling, depending on wavelength. The basic cause of their 
existence is the non-local nature of the ionisation process. This is quantified by the 
ionisation length L .  The growth constant for the waves is determined by linear theory. 
It is shown that stationary waves in a finite sample can give rise to a current-controlled 
NDR. Unstable stationary waves grow into saw tooth waves with an amplitude limited 
by trap occupancy. The theory is applicable to all solids in which the differential con- 
ductivity is small and the drift velocity and diffusion is large at the relevant impact 
ionising fields. It therefore encompasses semiconductors as well as insulators. 
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